YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

COURSE INFORMATON				
Course Code	MSN 560	Course Title	Optical and Photonic Mat	erials and Coatings
Semester	Credits	ECTS	C + P + L Hour	Prerequisites
3	3	10	3+0+0	-

Language of Instr	uction Course	e Level	Course Type
English	Underg	raduate	Core/Elective
Course Coordinator	Dr. Öğr. Üyesi Ayşe	e Dulda	
Instructors	Dr. Öğr. Üyesi Ayşe	Dulda	

Assistants

Goals

Examples of how biosensors are used for different applications. Method verification. Protein / antibody based sensors: protein immobilization, specificity, binding constants, kinetics, diffusion. Electrochemical and optical sensors / transducers. Potentiometric methods. Redox enzymes in amperometric methods. Conductivity methods. Applications of quartz micro balance. Optical methods: UV / Vis / IR, fluorescence, luminescence, fiber optic, surface plasmon resonance. Diagnostics and other biosensor applications are discussed critically, with special emphasis on sensitivity, selectivity, and stability.

Contribution of

the Course to theAbility to learn how to apply course knowledge to solve real-worldProfessionalproblems with a variety of biosensors in the medical field.EducationCourse to the medical field.

YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

Course Learning Outcomes	Detailed Program Outcomes	Teaching Methods	Assessment Methods
describe how biospecific interaction is used for various applications	1a, 1b, 2a	1,2	А
describe and critically evaluate a selected application of a biosensor	1a, 1b	1,2	A, G
compare different techniques with emphasis on sensitivity and selectivity	1a, 1b	1,2	A, G
describe the most common sensor principles used today, such as electric, optical, and mechanic registration.	1a, 1b	1,2	A, G

Teaching Methods:	1: Lecture by instructor, 2: Lecture by instructor with class discussion, 3: Problem solving by instructor, 4: Use of simulations, 5: Problem solving assignment, 6: Reading assignment, 7: Laboratory work, 8: Term research paper, 9: Presentation by guest speaker, 10: Sample Project Review, 11: Interdisciplinary group working, 12:
Assessment Methods:	A: Written exam, B: Multiple-choice exam C: Take-home quiz, D: Experiment report, E: Homework, F: Project, G: Presentation by student, H:

	COURSE CONTENT	
Week	Topics	Study Materials
1	Description of Biosensors	Lecture Notes and Textbook
2	Biomolecules used in biosensors and immobilization methods.	Lecture Notes and Textbook
3	Support materials, types and properties	Lecture Notes and Textbook
4	The properties and characteristic of biosensors and performance factors	Lecture Notes and Textbook
5	Enzymatic biosensors	Lecture Notes and Textbook
6	Immunobiosensors	Lecture Notes and Textbook
7	DNA biosensors	Lecture Notes and Textbook
8	Midterm	

Lecture Notes 9 Cell based biosensors and Textbook Lecture Notes Electrochemical biosensor 10 and Textbook Lecture Notes Optical biosensors and Textbook 11 **Student Presentations** Lecture Notes 12 and Textbook Student Presentations Lecture Notes 13 and Textbook Lecture Notes 14 Student Presentations and Textbook

15 Final

	RECOMMENDED SOURCES
Textbook	A.Mulchandani, K.R. Rogers, 1998. "Enzyme and Microbial BiosensorsTechniques and Protocols", Humana Press, Totowa, New Jersey, 2- J.Cooper, T.Cass, Biosensors, 3- Biotechnology Advances 22 (2004) 505–518. Nanotechnology and Biosensors.
Additional Resources	MIT open course lecture notes

Documents	
Assignments	
Exams	

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Midterm	1	30
Presentation	1	30
Total		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRAD	E	

YEDİTEPE UNIVERSITY

FACULTY OF ENGINEERING

COURSE DESCRIPTION FORM 2019/2020-1

Total

100

COURSE CATEGORY

Field Course

	COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES	
No	Program Learning Outcomes	check √
1a	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline,	\checkmark
1b	Ability to use theoretical and applied knowledge in these areas in complex engineering problems.	\checkmark
2a	Ability to identify, formulate, and solve complex engineering problems,	\checkmark
2b	Ability to select and apply proper analysis and modeling methods for this purpose.	
3a	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result,	
3b	Ability to apply modern design methods for this purpose.	
4a	Ability to devise, select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.	
4b	Ability to employ information technologies effectively.	
5a	Ability to design experiments for investigating complex engineering problems or discipline specific research questions,	
5b	Ability to conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	
6a	Ability to work efficiently in intra-disciplinary teams,	
6b	Ability to work efficiently in multi-disciplinary teams,	
6c	Ability to work individually.	
7a	Ability to communicate effectively in Turkish, both orally and in writing,	
7b	Knowledge of a minimum of one foreign language,	
7c	Ability to write effective reports and comprehend written reports, prepare design and production reports,	
7d	Ability to make effective presentations,	\checkmark
7e	Ability to give and receive clear and intelligible instructions.	
8a	Recognition of the need for lifelong learning, ability to access information, ability to follow developments in science and technology,	
8b	Ability to continue to educate him/herself.	
9a	Consciousness to behave according to ethical principles and professional and ethical responsibility.	
9b	Knowledge on standards used in engineering practice.	
10a	Knowledge about business life practices such as project management, risk management, change management.	

10b	Awareness in entrepreneurship and innovation.
10c	Knowledge about sustainable development.
11a	Knowledge about the global and social effects of engineering practices on health, environment, and safety,
11b	Knowledge about contemporary issues of the century reflected into the field of engineering.
11c	Awareness of the legal consequences of engineering solutions.

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	6	84	
Presentation	1	3	3	
Off-the-classroom study for presentation	1	60	60	
Off-the-classroom study for the final exam	1	60	60	
Total Work Load			249	
Total Work Load / 25 (h)			9,96	
ECTS Credit of the Course			10	

Prepared by: Dr. Öğr. Üyesi Ayşe Dulda	Preparation date: 15.12.2020
--	------------------------------